Filters

FDA IAQ Compliance Requirements In Food Production

During the fall of 2015, the U.S. Food and Drug Administration finalized a rule regarding preventive controls of human food. The final rule is part of the legal obligation of the FDA to provide guidelines that align with the Food Safety Modernization Act, a law signed into legislation in early 2011.

According to the FDA, the law is one of the most comprehensive reforms of food safety laws in the last 70 years. Prior to the signing of FSMA, laws were designed to respond to food contamination outbreaks. That has now changed, as the focus shifts more to preventing contamination.

Statistics from 2014 collected by the U.S. Centers for Disease Control and Prevention stated that throughout that year, 846 foodborne illnesses were reported, with 13,246 individuals falling ill and 21 fatalities. To help prevent these outbreaks, the FDA’s rule establishes regulations for manufacturers and compliance requirements to ensure food doesn’t become contaminated during the production process. These regulations specifically outline sanitary guidelines, which include air filtration systems.

Food production line.

What is the rule?

Preventive controls of the finalized rule indicate that within a food-processing plant, systems are required to ensure hazards are eliminated or minimized. The FDA stated that this requirement covers food allergens and sanitation controls.

While food manufacturing plants are likely outfitted with air filtration systems, the FDA has imposed compliance deadlines to ensure all aspects of food processing follow the rule and have the proper air filtration systems in place. Small businesses will have two years to comply, very small organizations, defined as, defined as those with less than $1 million in annual revenue, will have three years and every other company must comply in a year of the final rule’s publication.

Role of Air Filters in Food Production

Air filters, specifically HEPA filters, clean out the air when various foods are manufactured. It’s a process a majority of consumers likely don’t think about as they sit down to eat at the dinner table, but it’s one that has a huge effect on the final product.

For example, the process of making yogurt involves the filtration of plant air, according to Michael Bryne, a business and technical manager at EHL Group, a company that specializes in various engineering fields. He stated in a LinkedIn post that yogurt facilities need point-of-use air that is filtered to a sterile level, otherwise the final product may not turn out as intended.

Food processing plant managers and executives will have to ensure their facilities are outfitted with air filtration systems to minimize the risk of food being exposed to contaminants. Since companies will have time to comply with the FDA’s final rule regarding preventive controls for human food, they can contact Air Impurities Removal Systems to find the best filters available to use during the food production process.

HEPA vs. ULPA Filtration: What’s the Difference?

HEPA versus ULPA Filtration: What’s the Difference? 1

It’s difficult to imagine a time when clean air was the exception rather than the standard in places such as factories, hospitals, distilleries, and doctors’ offices. But before commercial air filtration was invented, workers were exposed to all manner of indoor air pollution (IAP). As a result, illnesses such as asthma, blood poisoning, even cancer, were not uncommon occupational hazards. The need for worker protection was great.

It wasn’t until 1942 that the first step toward safeguarding indoor air quality (IAQ) was taken. During WWII, a small band of research and development scientists working on a top-secret nuclear program were tasked with finding a way to control the spread of minuscule particles of radioactive matter in order to protect their fellow government workers. Due to their efforts on that classified post, code-named “The Manhattan Project,” the atomic bomb was developed. So, too, was the first HEPA filter.

But that one effort wasn’t the end of development of air filtration products to improve IAQ for workers.

In any industrial setting, there are multiple sources of IAP, most of which are a complex mix of substances which can vary in their potential health risks. Pollutants can originate from both biological and non-biological sources. (1) Biological contaminants include mold, dust mites, and rodent feces and dander. Non-biological include emissions from VOCs, smoke, and chemical vapors. In businesses such as healthcare, where no manufacturing occurs, the threat of infection is the main exposure risk.

Major IAQ Inventions That Led Up To ULPA filtration:

1823 – “Smoke Helmet”: protected firefighters from harmful coal and soot.

1854 – Gas mask: powdered charcoal was used as the filtering agent.

1908 – Electrostatic precipitator: collected and eliminated fumes and mists in factories and vineyards.

1942 – The HEPA (High-Efficiency Particulate Air) filter: based on the gas masks worn by soldiers which were made from a filter paper containing asbestos and cellulose fibers.

1970s – ULPA (Ultra Low Penetration Air) filter: was born after years of trying to create a higher level of indoor air cleaning, one that blocked even the smallest particles from reentering worker’s breathing space.

Today, both HEPA and ULPA filters are designed to catch airborne particulates and operate in a similar fashion. The filters are made up of minuscule strands of crossed and pleated glass fibers. When air is forced through the fine mesh filter, particles become trapped and are unable to reenter the atmosphere. But their similarities end here.

What researchers learned over the years is that a one-size-fits-all air cleaner isn’t suitable for all applications and that the size of the particles needing to be captured should determine the kind of filtration used. Fine particles need one kind of filtration, coarse particles, usually another.

Submicron Particulate

Fine particles or particulate matter (PM) is the sum of all liquid and solid airborne emissions 2.5 microns or less. Coarse particles fall between 2.5 and 10 microns.

A micron is a unit of measurement; 25,000 microns per inch. In industry, PM can be smoke and fumes from chemicals burning, or dust from metals and wood. In healthcare, smoke and dust are not as much a concern as are fine particles from viruses, bacteria, and mold.

In order to meet the minimum standard as set by the Department of Energy, HEPA filtration must trap at least 99.97% of all particles larger than 0.3 microns. (2) ULPA filters, on the other hand, are required to be 99.999% efficient and able to remove particles smaller than .12 microns in diameter.

To illustrate the size of particles, envision a strand of human hair. The average is somewhere between 50-70 microns. Dust, pollen, and molds are usually less than 10 microns in diameter. And fine particulates, such as viruses, usually measure under 2.5 PM. (3) This generally includes dust like pollen, mites, and pet dander. But airborne chemicals such as VOCs and mists from bacteria and viruses are too small to be caught by HEPA filters and pass right through. ULPA filtration was invented specifically for this purpose.

HEPA vs. ULPA

HEPA filters can remove fine PM as well as some coarser particulates. ULPA filtration traps the finest of PM – the ones that go right through a HEPA filter. But there are other considerations beyond capture capacity to be made before deciding what product to use for your office, lab, or facility.

Efficiency measures the ability of the filter (over the life of the product) to remove airborne particles. Since the ULPA traps more of the smallest particles than does the HEPA, it is considered more efficient.

And, resistance refers to the airflow capacity of matter as it moves through the filter. Since the ULPA filter media is denser, airflow is lower than a comparably sized HEPA filter, resulting in lower air circulation plus higher power use required by the unit blower to move air through the filter. This affects the life and longevity of the filter, making the ULPA less economical.

Industries and Applications

HEPA filters were designed for most industrial, military, and government applications, particularly in types of manufacturing where airborne particulate matter is constant. HEPA popularity has grown and is now common for home use ranging from bedroom air purifiers to vacuum cleaners.

ULPA filtration is used in situations where a more efficient means of capturing the smallest PM and preventing the spread of airborne bacterial and viral pathogens is important. ULPA filters are best suited for more critical applications in fields such as medical and healthcare, pharma research and manufacturing, biomedical labs, airline cabin purifiers, clean rooms, electronics, nuclear and aerospace industry applications.

When deciding between HEPA and ULPA filtration, one should start with safety. If both types of filtration methods can meet your particulate capture needs for a safe and healthy workplace, then take into consideration a unit’s efficiency and resistance.

To reduce the risk to manufacturing and healthcare workers, experts recommend a multi-layered approach to achieving a safe and healthy IAQ. This includes indoor air filtration. (4)

At Air Impurities Removal Systems, Inc., we protect our manufacturing and healthcare customers by providing them with high-quality products and IAQ expertise. Contact us today to speak to a clean air specialist.

Presidential Executive Order: COVID-19 and Worker Protection

What this means for businesses regarding indoor air quality

Presidential Executive Order: Covid-19 and Worker Protection 1
On January 21, 2021, a Presidential Executive Order was signed regarding the policy of ensuring the health and safety of American workers amid the Covid-19 pandemic. (1)

Before this order was issued, OSHA developed a Covid-19 planning guide (2) to help businesses identify workplace risk levels and determine what measures were appropriate to implement.

The order states that the Federal government should take swift action to reduce Covid-19 transmission risk in the workplace. Section 2 of the order specifies that under the OSHA Act, revised guidelines will be given to employers and that coordination with state governments will be executed so as to ensure adequate protection against Covid-19 for all workers.

Specifically, the EO orders OSHA to:

1. Issue revised guidelines to employers regarding Covid-19 worker safety measures. Note: this is NOT a directive for OSHA to issue emergency temporary standards.
2. Consider whether new – but temporary – mask wearing requirements are needed.
3. Review OSHA enforcement efforts.
4. Launch a national program related to Covid-19 violations creating occupational risk.
5. Coordinate with states that have workplace safety plans to help ensure adequate worker protection.
6. Partner with US Department of Labor’s public affairs office and OSHA regional offices to create and implement a multilingual outreach campaign.

The White House set forth this order not just to underscore the importance of following existing OSHA regulations, but to reduce – if not eliminate – workplace risk of Covid-19 transmission.

What does this mean in terms of indoor air quality? It means that anything that could negatively affect worker health and safety – in the context of this current pandemic – should be addressed and remedied. Cleaning, social distancing, and mask-wearing isn’t enough if workplace air is unhealthy. A clean and uncontaminated environment is crucial for worker wellness.

The EPA states there are three basic strategies to improving indoor air quality:

  1. Source Control
  2. Improved Ventilation
  3. Air Cleaners (3) 

The National Institutes of Health (NIH) goes further and states that air purifiers have the potential to further reduce exposure to virus-laden aerosols and serve as a useful supplement to other protective procedures. (4)

Regardless of industry, every profession has its own challenges when it comes to indoor air quality. Fortunately, the key to providing a healthy IAQ is the same regardless of the type of business. The solution is employing air purification / filtration methods.

Here are just five examples of businesses and their specific IAQ challenges:

Schools

Primary schools, unlike personal residences, commercial buildings, and office structures, tend to have more people crowded in smaller spaces. For example, K-12 schools struggle with social distancing in congested areas such as cafeterias and classrooms (5), while colleges face challenges with areas such as student housing and lecture halls. Germ-sharing is communal at many schools. But it doesn’t need to be.

Dental Offices

Many dentists operate out of small offices where proper ventilation may be compromised. Unhealthy air could threaten worker health every time a patient opens his mouth – which is done often and without a mask during dental procedures. The aerosols created during patient treatment are emitted into the air and linger unless airflow and ventilation are suitable. (6)

Spas, Salons, Barbershops

These types of businesses are often located in smaller, tighter spaces which can create an environment ripe for transmitting illness. Workers are unable to social distance from their clients, putting them in harm’s way if someone is sick. Air purification and constant air flow help combat viral transmission.

Nursing Homes

In any healthcare facility, the potential for communicable diseases to enter a worker’s breathing space is an ongoing risk. Even more so at nursing homes, where transmission and death rates are particularly high. While only 7% of the country’s cases have occurred in nursing homes, residents there represent 40% of all US Covid-19 deaths. (7)

Gyms, Health Clubs, Sports Facilities

Indoor places where heavy breathing and sweating regularly occur require extra attention. (8) When people are outside, droplets from exhalations, coughing, and sneezing are dispersed into the air more quickly. But indoors, viral spray can linger, increasing the potential for transmission.
What Can Businesses Do to Improve IAQ?

Portable HEPA Filtration

Before new guidelines are issued and officially in place, businesses of all types can safeguard worker health by reducing the threat of viral transmission. In addition to social distancing, mask-wearing, and cleaning and disinfecting, establishments – wherever space and funding will allow it – can add portable HEPA filtration systems to their virus-combating arsenal.

The reason why air cleaners with HEPA filtration are powerful tools against viral transmission is that they are designed to draw in polluted air and filter out impurities. Quality air cleaning and filtration units are proven to reduce airborne contaminants, including particles containing viruses. Portable air cleaners (also known as air purifiers) may be particularly helpful. Used exclusively, air cleaning and filtration are not enough to protect people from exposure to the virus that causes COVID-19. But when used alongside other control methods recommended by the CDC, air filtration can be an effective way to reduce Covid-19 transmission rates.

Our portable HEPA filter air cleaning systems come in three different models, the filtration and recirculation capabilities ranging in room sizes as small as your typical classroom to multi-use areas up to 1200 sq. ft.

To find out more about our air purifying systems – such as our 987-AMB-HEPA model – contact Air Impurities Removal Systems, Inc. to speak to one of our clean air specialists.

Filter Change Frequency Is Based On Contaminant Type

With companies increasingly employing air filtration technology to remove environmental contaminant types like dust, smoke and chemicals, users are often asking when they should change their filters. To keep air cleaners working their best, you should regularly replace filters and absorption media to ensure peak performance and maximize worker respiratory protection.

Changing Your Prefilter or Primary Particulate Filter


When using Extra-All air filtration equipment, you should keep in mind that these devices have both a prefilter and a primary particulate filter, which work together to effectively capture impurities in the air. After a certain period, particulates may clog and slow down your system’s ability to filter out containments. In case you notice your filtration systems are not working as well, you should first check your equipment’s prefilter. If you detect the air flow is weak, change out the prefilter before moving on to the primary filter if your device still doesn’t work at full capacity.

Types of Contaminants Determine Frequency to Switch Out Filters


After determining whether you should switch out your primary filter, figure out the main contaminants your filter mainly works to prevent because this will factor into which filter you need to change and how often. When your air filtration equipment mostly filters out impurities like dust and smoke, the particulate filter might be the component you should focus on. On the other hand, if your system largely eliminates chemical fumes and vapors – which is the case for fume extraction equipment – you should use the right vapor removable module.
Users with gas and fume reduction filters will have to pay attention to the time between filter changes. Equipment that extracts light vapors primarily will have to be changed every 6 to 12 months. Equipment that handles more heavy vapors should be switched out more frequently with a new filter every 1 to 4 months.

With regular filter changes, your filtration equipment will work optimally to maintain a healthy environment for you and your staff.

No Matter Your Industry, HEPA Filtration Improves Indoor Air Quality

Building managers in various industries have a lot of tasks to oversee, including everything from ensuring elevators are working to lighting and electrical maintenance.

But perhaps no task is more important than maintaining the building’s air filtration system. In industries where workers are involved in labor-heavy tasks or craftsmanship, air quality levels are hugely important. For example, welding and cutting stones and concrete result in fine particles being thrown into the air.

Without the appropriate ventilation systems or filters, these particles can gradually become dangerous to individuals who inhale them on a consistent basis. Lung cancer, kidney disease and other illnesses are only some of the dangers these workers face as a result of these particles being in the air. Even office environments can be subject to dirtier air than one might imagine.

Air filters are only one component of keeping workers safe and healthy. To help ensure the cleanest air possible, the HVAC systems at worksites and offices should be outfitted with HEPA filters.

What is a HEPA filter?

Short for high-efficiency particulate air, HEPA filters are among the best a building manager can install and utilize.  Manufacturers of HEPA filters must meet strict requirements for the filters to be classified as such.

The U.S. Department of Energy requires HEPA filters to capture 99.7 of particles larger than 0.3 microns. Air particles are caught through either interception, impaction or diffusion.

Where can they be used?

The best aspect of Hospital HEPA filters is the number of places they can be used. Cars and airplanes have them, but so too do a number of important pieces of infrastructure.

HEPA filters are prominent in manufacturing plants, offices and perhaps most importantly, medical buildings. Hospitals, even the enclosed areas patients are kept if they are contagious, are filled with allergens, germs and other particles dangerous to an individual’s health. HEPA filters are an important defense to ensure hospital staff and visitors don’t contract serious diseases.

But as the days and months pass, HEPA filters will need to be replaced. If not, their effectiveness wears out.

As such, HEPA filters should be checked every six to 12 months for efficiency. Otherwise, new HEPAs will need to be installed.

Companies and building managers looking to improve the air quality should utilize HEPA filters. Doing so can help eliminate and catch dangerous allergens and pathogens. By contacting Air Impurities Removal Systems, companies can utilize HEPA filters no matter the industry.

No Matter Your Industry, HEPA Filtration Improves Indoor Air Quality

Building managers in various industries have a lot of tasks to oversee, including everything from ensuring elevators are working to lighting and electrical maintenance.

But perhaps no task is more important than maintaining the building’s air filtration system. In industries where workers are involved in labor-heavy tasks or craftsmanship, air quality levels are hugely important. For example, welding and cutting stones and concrete result in fine particles being thrown into the air.

Without the appropriate ventilation systems or filters, these particles can gradually become dangerous to individuals who inhale them on a consistent basis. Lung cancer, kidney disease, and other illnesses are only some of the dangers these workers face as a result of these particles being in the air. Even office environments can be subject to dirtier air than one might imagine.

Air filters are only one component of keeping workers safe and healthy. To help ensure the cleanest air possible, worksites and offices should be outfitted with HVAC HEPA filtration systems.

What is HVAC HEPA Filtration?

Short for high-efficiency particulate air, HEPA filters are among the best a building manager can install and utilize.  Manufacturers of HEPA filters must meet strict requirements for the filters to be classified as such.

The U.S. Department of Energy requires HEPA filters to capture 99.7 particles larger than 0.3 microns. Air particles are caught through either interception, impaction, or diffusion.

Where can it be used?

The best aspect of Hospital HVAC HEPA filtration systems is the number of places they can be used. Cars and airplanes have them, but so too do a number of important pieces of infrastructure.

HVAC HEPA filtration is prominent in manufacturing plants, offices, and perhaps most importantly, medical buildings. Hospitals, even the enclosed areas patients are kept in if they are contagious, are filled with allergens, germs, and other particles dangerous to an individual’s health. HVAC HEPA filtration is an important defense that ensures hospital staff and visitors don’t contract serious diseases.

But as the days and months pass, HEPA filters will need to be replaced. If not, their effectiveness wears out.

As such, HEPA filters should be checked every six to 12 months for efficiency. Otherwise, new HEPAs will need to be installed.

Companies and building managers looking to improve the air quality should utilize HVAC HEPA filtration. Doing so can help eliminate and catch dangerous allergens and pathogens. By contacting Air Impurities Removal Systems, companies can utilize HVAC HEPA filtration no matter the industry.