Air Scrubbers & Negative Air Machines

Source Capture vs. Ambient: Two Important Air Filtration Methods

Welding is a process where there are many different methods, such as shielded metal arc, gas metal arc and submerged arc. Since the practice involves the use of sophisticated tools and equipment, workplaces have to ensure their employees are protected at all times. Welders often shield themselves by wearing protective clothing, in addition to a goggles and welding helmets. However, workplaces must also ensure their air filtration systems are properly working because the fumes from welding can become quite hazardous. Luckily, two filtration methods exist: source capture and ambient. Each filtration system has unique traits that workplaces need to be aware of.

benefits of source capture and ambient to welders

Dangers of Welding

Even though workers can protect themselves while welding, the process still results in other side effects that can be potentially dangerous to an individual’s health. To ensure welders are protected while working, the U.S. Occupational Safety and Health Administration has developed standards that building management must abide by.

For example, welding standards for construction industries are quite thorough. Per section 1926.353(c)(1) of OSHA’s Safety and Health Regulations for Construction, any welders working in an enclosed space must do so only if the local ventilation system meets OSHA standards. One of the agency’s rules states that oxygen must not be used for ventilation reasons. If, sufficient ventilation is not possible, employees must be outfitted with air line respirators.

Employers must ensure workers are protected because welding can lead to severe illnesses for workers. Most notable is metal fume fever, which is caused by exposure to fumes. This illness leads to flu-like symptoms, and individuals will typically experience periods of fatigue, nausea, headaches, chills, high fever, chest pain and more. According to Weld Guru, a metallic or sweet taste can also develop in the mouth, and this will distort the taste of food and liquids.

More severe metal fume fever symptoms may include vomiting, skin rash and convulsions. But for most individuals who contract the illness, their symptoms will go away within 24 to 48 hours. Individuals will feel completely healthy after four days.

Unfortunately, the exact cause of metal fume fever is not known, but there is reason to believe that workers often breathing metal oxide fumes could be a contributing factor. This may then lead to an immune reaction that causes modified proteins in the lung to act as allergens.

Metal Guru also stated zinc, magnesium and copper tend to result in the dangerous fumes workers may breath.

Source-Capture Ventilation

The best way to make sure workers do not fall ill from metal fume fever is to have ventilation systems installed throughout the area where welding takes place.

“Source capture through fume extraction should be utilized in order to remove fumes.”

As such, source capture through fume extraction should be utilized in order to remove fumes created from welding. With source capture, harmful and dangerous particulates are minimized before they can cause damage to a worker’s respiratory system.

Four types of source capture ventilation work best to protect welders:

  • Fume arm systems
  • Tip extraction
  • Overhead hood
  • Downdraft tables

A building’s manager will have to decide which type of source capture system works best throughout a building’s setup. For example, overhead hoods are suitable for large workspaces where smoke and fumes have to be contained. These systems then isolate the welding fumes to make for easier breathing. As a comparison, downdraft tables are built to draw fumes down and away from the worker as he or she breathes.

There are some downsides to source capture systems, however. In particular, managers may find it difficult to install these types of ventilation systems due to existing building infrastructure that might not be able to be reconfigured. In other instances, individual welders may prefer to have freely movable hoods that can provide a sufficient airflow and remove any fumes.

Ambient Air Filtration

Ambient air filtration systems can be installed in overhead spaces to draw fumes upward. From there, the air can be circulated to create an airflow that will maximize the benefits of clean air.

While there is a clear distinction between ambient and source capture air ventilation systems, leadership and building management should not think of one as a replacement for the other. Instead, source capture and ambient systems should be used together for maximum benefits.

With metal fume fever affecting welders across the country, managers have to ensure they are doing everything possible to protect workers. This involves abiding by OSHA and other compliance regulations, in addition to installing the necessary air ventilation systems.

Together, ambient and source capture systems will help alleviate the dangers welders face.

Contact Air Impurities Removal Systems for more information and ways to protect welders from metal fume fever. Employers will find numerous options to choose from, including mobile and bench-top fume extractors and downdraft tables.

Air Purification Safeguards Priceless Works of Art in the Sistine Chapel

With high pollution levels putting some of the world's most famous masterpieces housed in the Sistine Chapel at risk, the through new air purification systems

With high pollution levels putting some of the world’s most famous masterpieces housed in the Sistine Chapel at risk, the Vatican is hoping to save artwork through new air purification systems, The Associated Press reported.

The head of the Vatican Museums recently announced pollution in the Sistine Chapel have reached levels that may further damage its artwork. Recent studies indicate that the chapel’s almost 5.5 million annual visitors are adding to dust and humidity that pose a risk to various pieces of art, according to Religion News Service.

During the peak tourism season for the Sistine Chapel, 20,000 people walk through its halls each day – a figure that is three times the number of visitors compared to the last 30 years – bringing in dirt and dust along with them. In addition to Michelangelo’s painting depicted on the Sistine Chapel’s ceiling, the chapel contains the works of Pietro Perugino, Sandro Botticelli and Luca Signorelli.

Restoration at the chapel last took place in the 1990s, with the frescoes ending up brighter than what Michelangelo would have envisioned, according to critics of the restoration. Director Antonio Paolucci was hesitant about having another major restoration. He said restoration is “traumatic” for the artwork.

“There won’t be any more restorations,” he said. “But maintenance continues.”

Air Filtration Systems Help Preserve Artwork’s Integrity

Instead of having another restoration, the Vatican Museums plan to maintain the integrity of its valuable artwork through the use of air purification systems. Paolucci said levels of dust, humidity and carbon dioxide are expected to be controlled through the chapel’s set of air purifiers as well as a new air conditioning system. These systems will be installed at what is usually the site of papal elections and should be operational by the end of 2014.

The Vatican aims to reduce the amount of pollution to a maximum of 800 particles per million. During the Sistine Chapel’s highest concentration of pollution, this level is more than 1,600 particles per million, according to officials.

While Paolucci said he was confident the new air purifying and conditioning system will help reduce the dulling and discoloration of the chapel’s artwork, if pollution inside the chapel is not curbed, the Vatican may be forced to limit its number of visitors.

“If this project doesn’t work, I’ll be forced to impose a limited number (of visitors),” Paolucci said. “But that would be a painful solution.”

Eliminate Harmful Locker Room Bacteria With Clean Air Systems

Powerful air ventilation systems can reduce the amount of bacteria found in a locker room.

Building managers overseeing locker rooms in gyms and stadiums will need to ensure these areas are outfitted with working air filtration systems. Whether it’s the men’s or women’s area, locker rooms may foster the harmful growth of infectious diseases and more if they are not properly cleaned, or don’t have a functioning HVAC system.

Filter Out the Odors

Locker rooms are typically used by gym goers and professional athletes for a variety of reasons, and it’s not uncommon to sometimes think of locker rooms as where athletes hang out. In fact, these facilities serve many purposes, starting with as a private area for individuals to change and shower in.

But as sports have changed to become an even bigger part of popular culture, professional teams have invested more into their facilities. These days, locker rooms are only one part of a much larger facility. Take for instance the Oregon Ducks college football team, who in 2013 unveiled a $68 million dollar structure where student-athletes could realistically live in.

Athletes have access to not only a cafeteria, barbershop and theater, but also a weight room, health center and changing area. No matter the time of the year, athletes are training to better themselves for the next season. While the sweat or odors inherent in any locker room setting may not seem like much at face value, if perspiration and such aren’t accounted for, health issues can arise.

By removing odors, building managers are creating a cleaner environment that not only looks well kept, but also smells pleasant, given the purpose these areas serve. Locker rooms in public gyms or workout spots may be avoided if they are not properly maintained, and this could translate into members foregoing storing their personal belongings in a locker. This may increase the risk of potential theft.

But in locker rooms, a more dangerous situation has the potential to cause serious medical harm in the form of staph infections and potentially MRSA.

Locker room.

What is a Staph Infection?

As defined by the Mayo Clinic, staph infections can be caused by staphylococcus bacteria making its way deep into an individual’s body, such as the bloodstream or heart. Staph infection symptoms are varied depending on where the infection is first found.

For example, skin infection symptoms include the development of boils, a painful impetigo or even scalded skin syndrome, which is when blisters form and easily break.

In sports, staph infections can spread through contact when there are open cuts or skin-to-skin contact. Locker rooms are also known to be a cause for these infections when athletes share equipment, towels or uniforms.

One serious form of a staph infection is MRSA, which the Mayo Clinic stated is typically resistant to major antibiotics used to treat regular staph infections. MRSA can also be spread by skin-to-skin contact in locker rooms.

MRSA infections are not just a concern at the high school or amateur level, either. In 2015, former Tampa Bay Buccaneers kicker Lawrence Tynes sued the team after he contracted MRSA that forced him to retire. He claimed the organization never informed the team members that individuals who had MRSA visited facilities, nor was equipment properly cleaned and sterilized.

The infection also affected former New York Giants player Daniel Fells, who, as of December 2015, underwent 10 surgeries to treat MRSA, according to USA Today.

These are only a small number of professional athletes who have developed MRSA and as such, organizations and building managers need to ensure their athletes are in the safest locker room environment possible.

“Powerful air ventilation systems can reduce the amount of bacteria found in a locker room.”

Creating a Clean Locker Room

First, all gym and locker room equipment should be thoroughly cleaned and sterilized to help prevent staph infections from spreading. Athletes will also have to be proactive to prevent contracting these serious infections. The U.S. Centers for Disease Control and Prevention recommended athletes always wash their hands before and after playing or practicing their sport. By following good personal hygiene, athletes of all ages will help decrease the chance of contracting a staph infection or MRSA.

But the locker rooms also need to be outfitted with the latest in air filtration systems. The Mayo Clinic stated that staph bacteria is found in the nose or on the skin of roughly a third of the population and in most instances, the bacteria is harmless.

Even so, powerful air ventilation systems can help reduce the amount of bacteria found in a locker room, while also eliminating odors and mildew. These systems should be utilized everywhere, from high school and college locker rooms to those found in public gyms and workout facilities.

By contacting Air Impurities Removal Systems, locker room and building managers are helping to ensure they are doing everything possible to reduce the likelihood of athletes contacting a serious infection.

Danger: Silica Dust! Proper Ventilation & Source Capture Are Key

In late March 2016, the U.S. Occupational Safety and Health Administration released its final rule regarding worker protection from the dangers of breathable silica dust.

With the implementation of the final rule, which has been debated for decades, OSHA estimated more than 600 lives will be saved annually, in addition to 900 or more cases of silicosis being deterred. The agency also stated the final rule will result in net benefits of $7.7 billion on a yearly basis.

The rule becomes effective June 23, 2016, but companies in various industries will have time to comply. Organizations in construction will need to meet the final rule’s compliance by June 23, 2017, while general industry and maritime have until June 23, 2018. Some of these compliance requirements will involve the implementation of modern air filtration systems to filter out the harmful particles.

Companies overseeing oil and hydraulic fracturing operations have more time to meet the requirements, as the deadline for this industry is not until June 23, 2021.

“More than 80 years ago, Labor Secretary Frances Perkins identified silica dust as a deadly hazard and called on employers to fully protect workers,” U.S. Secretary of Labor Thomas E. Perez said. “This rule will save lives. It will enable workers to earn a living without sacrificing their health. It builds upon decades of research and a lengthy stakeholder engagement process – including the consideration of thousands of public comments – to finally give workers the kind of protection they deserve and that Frances Perkins had hoped for them.”

Silica dust.

New Regulations

The final rule will create a new permissible exposure, also known as PEL, for airborne crystalline silica of 50 micrograms per cubic meter of air over an eight-hour shift. These new measurements will become the standard for construction, maritime and general industries and are 50 percent less than the old PEL standards, and 80 percent less than the old standards in the maritime and construction industries, Bloomberg BNA stated.

Additionally, the 50 μg/m3 PEL was first recommended as a safe level back in 1974 by the National Institute for Occupational Safety and Health.

With these new PEL standards, approximately 2.3 million employees are exposed to silica dust while on the job. Of that number, 940,000 will still be exposed to levels exceeding the new standard.

What is Silica, and Why is it Harmful?

According to OSHA, crystalline silica is found in granite, soil, and sand, among other minerals. The agency also stated that quartz is the most common form of silica, as it’s typically found in stones, concrete, rocks, and more. Silica dust comes from the process of cutting, drilling, or sawing these materials.

Silica dust is especially dangerous to individuals when it is inhaled, the small particles can end up inside the lungs. Over time, the buildup of these particles may lead to serious illnesses, such as silicosis, kidney disease or lung cancer.

Silicosis is especially dangerous because currently, there is no cure for it. The disease forms when scar tissue forms on the lungs, which then reduces one’s ability to breathe, and in turn, an individual then becomes more vulnerable to other lung illnesses, such as tuberculosis.

In most instances, individuals will not develop silicosis until years after the exposure. OSHA stated that chronic silicosis doesn’t start to occur until after nearly 15 to 20 years of low to moderate exposure to silica. Symptoms are not immediately noticeable and individuals will usually have to undergo a chest X-ray. Over time, those with chronic silicosis will experience a shortness of breath while exercising, and as the illness worsens, periods of fatigue and chest pain will occur.

Workers exposed to high silica levels may develop accelerated silicosis, which may start affecting an individual 5-10 years down the line. Symptoms are more severe, as someone may lose weight and become physically weak.

“The new rule requires ventilation systems be used to help decrease the amount of silica dust.”

The Role of Ventilation

During an interview with EHS Today, masonry trainer Tom Ward said the new compliance requirements can generally be met with materials found at a local hardware store. Workers can also protect themselves by using water to limit the amount of silica dust created.

With regular training and proper safety gear, worksites can protect employees and lower silica levels at the same time. In fact, the new rule requires ventilation systems be used to help decrease the amount of silica dust. Fume extractors, for instance, can collect silica as a worker is completing their work at a personal workstation.

Larger ventilation systems can also be used to ensure any lingering particles are filtered out. The final rule is 1,772 pages, and among the document – currently available on the Federal Register – is a section dedicated to some of the costs of ventilation systems. This information will help employers know what to expect as the deadline for compliance approaches.

Additionally, companies can also contact Air Impurities Removal Systems to find out the air ventilation systems best suited for the removal of silica dust in order to preserve the health of workers.

FDA IAQ Compliance Requirements In Food Production

During the fall of 2015, the U.S. Food and Drug Administration finalized a rule regarding preventive controls of human food. The final rule is part of the legal obligation of the FDA to provide guidelines that align with the Food Safety Modernization Act, a law signed into legislation in early 2011.

According to the FDA, the law is one of the most comprehensive reforms of food safety laws in the last 70 years. Prior to the signing of FSMA, laws were designed to respond to food contamination outbreaks. That has now changed, as the focus shifts more to preventing contamination.

Statistics from 2014 collected by the U.S. Centers for Disease Control and Prevention stated that throughout that year, 846 foodborne illnesses were reported, with 13,246 individuals falling ill and 21 fatalities. To help prevent these outbreaks, the FDA’s rule establishes regulations for manufacturers and compliance requirements to ensure food doesn’t become contaminated during the production process. These regulations specifically outline sanitary guidelines, which include air filtration systems.

Food production line.

What is the rule?

Preventive controls of the finalized rule indicate that within a food-processing plant, systems are required to ensure hazards are eliminated or minimized. The FDA stated that this requirement covers food allergens and sanitation controls.

While food manufacturing plants are likely outfitted with air filtration systems, the FDA has imposed compliance deadlines to ensure all aspects of food processing follow the rule and have the proper air filtration systems in place. Small businesses will have two years to comply, very small organizations, defined as, defined as those with less than $1 million in annual revenue, will have three years and every other company must comply in a year of the final rule’s publication.

Role of Air Filters in Food Production

Air filters, specifically HEPA filters, clean out the air when various foods are manufactured. It’s a process a majority of consumers likely don’t think about as they sit down to eat at the dinner table, but it’s one that has a huge effect on the final product.

For example, the process of making yogurt involves the filtration of plant air, according to Michael Bryne, a business and technical manager at EHL Group, a company that specializes in various engineering fields. He stated in a LinkedIn post that yogurt facilities need point-of-use air that is filtered to a sterile level, otherwise the final product may not turn out as intended.

Food processing plant managers and executives will have to ensure their facilities are outfitted with air filtration systems to minimize the risk of food being exposed to contaminants. Since companies will have time to comply with the FDA’s final rule regarding preventive controls for human food, they can contact Air Impurities Removal Systems to find the best filters available to use during the food production process.

Engine Exhaust Fumes Cause Indoor Air Quality Problems

Engine Exhaust Fumes Cause Indoor Air Quality Problems 1

Health Hazards for Auto and Aircraft Engine Workers

As long as there are people who wish to travel and move things from one place to another, fast and easy transportation will continue to be a necessity. Global air travel alone accounts for 44,000 flights a day. Add the number of all road vehicles in use and it equals a staggering number of engines from planes, cars, and trucks that are tested, maintained and repaired every day. We must protect workers from possible air quality problems stemming from engine exhaust.

It is no secret that fuel emissions are a major source of air pollution (1). Government agencies and private companies exert great effort in developing cleaner fuels, reducing smog, and strengthening emission standards to lessen the negative environmental impact on our planet. What about how they affect indoor air quality? Aircraft and automotive engine exhausts are major contributors to indoor air pollution in airplane hangars and vehicle repair workshops. Combustible substances abound and if not contained, carry the threat of fire and explosion. (2)

The danger of compromised indoor air quality is not limited to spontaneous combustion; there are occupational health risks, as well.

Harmful Emissions

Engine exhaust emissions do not materialize from one single source. There are thousands of varieties of molecules possible and millions of varying chemical combinations. Contaminants abound. Depending on the type of fuel and engine, carbon particles, soot, Benzene, PAHs, and VOCs (3, 4, 5) can escape into the air and make people sick.

Here is a list of some, but not all, of the elements found in gas, diesel, and jet fuels:

Gas Exhaust (6):

  • Carbon monoxide
  • Hydrocarbons (Benzene)
  • Sulphur dioxide
  • Soot

Diesel Exhaust (7):

  • Nitrogen
  • Carbon monoxide
  • Hydrogen
  • Carbon soot

Jet Fuel (8):

  • Kerosene
  • Carbon monoxide
  • Hydrocarbons
  • Nitrogen & sulfur oxides

When an engine burns fuel, it mixes with air to create a complex combination known commonly as exhaust. If air cleaning measures are not properly in place, these fine particles and gases become suspended in the air and enter a person’s breathing space. Workers who spend the majority of their waking hours in airplane hangars and automotive garages are literally walled in, breathing fumes emitted from running engines.

Protecting Workers From Exhaust Fumes

In the short term, directly inhaling large quantities of exhaust fumes may cause nausea, dizziness, and irritation of the eyes, nose and throat. These effects will usually go away after contact ends. But very high and/or prolonged exposure to exhaust fumes may cause ongoing health problems. Respiratory symptoms such as coughing, chest tightness, and difficulty breathing, particularly in persons who are naturally predisposed to or have a history of asthma or other lung problems, may not be reversible. (5) In addition, ultrafine particles from aircraft and diesel engine exhausts have proven to cause cancer, heart disease, blood clots, brain hemorrhage and airway diseases, thereby increasing the risk of serious work-related illnesses and premature deaths. (4)

Both the auto and aerospace manufacturing industries must comply with OSHA regulations and standards but often, the minimum standards are not enough to protect workers from harm. Failure to control exhaust at its source can turn deadly. Most employers do their part. But extra caution can mean a healthier, safer, and more productive workplace.

Beyond meeting minimum regulatory requirements, there are steps that can be taken to implement stricter internal standards to ensure worker safety. For example, products such as our exhaust blowers and fume extraction arms together provide a safe and easy means of removing harmful particulate matter and toxic fumes.

At AIR Systems, Inc., we serve our customers in the aircraft and auto industries by providing indoor air quality management solutions in addition to our stellar air-cleaning products. Contact us today for a free estimate from one of our highly skilled clean air specialists.

The Tennis Ball, Indoor Air Quality, and Occupational Risk in the Rubber Industry

Compromised Indoor Air Quality Causes Occupational Risk in the Rubber Industry

The Tennis Ball, Indoor Air Quality, and Occupational Risk in the Rubber Industry

Whether you compete for a club championship trophy, spend afternoons on the clay with friends, or are simply a pet owner who passes time playing fetch with your dog at the park, you are no stranger to that universally recognized ball wrapped in bright yellow felt. The tennis ball.

Tennis as we know it was first played in the 1870s but before that, the balls used were considerably different than those of today. Fabricated from cloth or leather and filled with rags or horsehair, tennis balls during that time weren’t uniform in design. Modern tennis adopted improvements to the ball that including stitched flannel around the rubber surface and air pressurizing the balls for a reliable bounce. Then along came vulcanized rubber, which quickly became a manufacturing mainstay. Felting was the last major change. (1)

Today, over 300 million tennis balls are produced each year with more than 200 brands worldwide. It takes a lot of rubber to turn out that many balls. As a result, rubber workers are at risk for illness due to air pollution caused by the industrial methods employed during manufacturing. (2)

Harmful Byproducts of Rubber Production

According to the EPA, the occupational risks affecting the rubber industry are directly related to the rubber-making process. In addition, the EPA has identified rubber manufacturing facilities as a major source of HAP (hazardous air pollutant) emissions. (3)

While rubber goods are an important part of modern life, their production involves subjecting varied combinations of hundreds of chemicals to heat, pressure, and catalytic action during the various manufacturing processes. As a consequence, toxic substances and chemical byproducts abound.

The rubber manufacturing industry employs a considerable number of workers. Though the current US Department Of Labor statistics is not available at this time. The fact that in 1989 there were approximately 132,500 workers employed in non-tire rubber production is telling. There are many thousands of rubber workers potentially at risk, many of whom, make tennis balls.

How Does It Happen?

Beginning with a rubber-based core, there is a five-step process for making a tennis ball.

  1. Crushing – The rubber compound is repeatedly crushed in an open mill
  2. Compressing – The forms are cut from the rubber core and then compression molded into a thin shell
  3. Sheeting – The shell is made into a sheet and rolled up, then cooled and cut into semi-circles
  4. Buffing – Shell halves are combined then buffed and then placed into a cylinder to add grooves before felt is added
  5. Felting – A machine cuts the fabric so felting may be stuck to the rubber core to create the finished product

Steps 1-3 present the highest risk for unhealthy exposure, according to the National Institute Of Occupational Safety & Health (NIOSH). Indoor air quality concerns such as contact with amine composites (which are organic derivatives of ammonia) (5) and exposure to hundreds of different chemical emissions in the form of vapors, dust, gases, and fumes (4) are at the top of the NIOSH caution list. Workers are exposed to these toxins – some of them carcinogenic compounds – by way of inhalation and dermal absorption. OSHA, too, has warned workers in the rubber industry about specific health problems affecting the kidneys, lungs, skin, and eyes. Headache, nausea, fever, and dizziness are only a few of the possible symptoms.

Protecting Rubber Industry Workers

Most rubber manufacturing plants (including those that produce tennis balls), comply with OSHA recommendations for minimizing worker risk by way of wearing protective clothing and using engineering controls. (5) But it proves prudent to make sure that source capture equipment is modern and up to date and all ambient air cleaning systems are sufficient to adequately purify the air so workers are not at occupational risk.

At Air Systems Inc., we serve our customers in the rubber manufacturing industry by providing indoor air quality management solutions in addition to our stellar air cleaning products. Contact us today for a free air quality assessment with one of our skilled and experienced indoor environmental specialists.

Poor Indoor Air Quality Linked to Dry Eye Syndrome

Recent research connects the relationship between air pollution levels and dry eye syndrome

Using air cleaning systems to purify indoor air can help combat the outdoor dry eye contaminants that can cause dry eye syndrome.

Residents who live in polluted cities were more likely to experience dry eye syndrome, according to Science Daily.

The medical condition is considered a deficiency in the ability to produce natural tears and affects up to 4 million people aged 50 and older in the United States. Dry eye syndrome can lead to changes in quality of life and can prevent people from enjoying everyday activities like reading. This syndrome can also cause the eyes to produce an excess amount of tears as a response. 

Environmental factors such as atmospheric conditions have long been pinpointed as a cause for the condition. The U.S. Environmental Protection Agency said on its site that indoor pollutants can also result in a variety of adverse health effects, such as sore eyes, headaches, and fatigue, which could be reduced with air cleaners. Sources of these pollutants include combustion pollutants, including carbon monoxide and nitrogen dioxide, and volatile organic compounds (VOCs), from chemicals commonly detected in varnishes and waxes as well as cleaning materials.

Researchers in the study connected the prevalence of dry eye syndrome to the amount of pollution city residents face, according to daily Rx News. For the study, data on 3.41 million patients who visited 394 eye clinics for veterans in locations around the U.S. were collected between July 2006 and July 2011. Out of these millions of patients, about 606,000 were recorded as having low tear volume, which could indicate dry eye syndrome. The research results were announced at the Annual Meeting of the American Academy of Ophthalmology in New Orleans.

The connection between eye health and dry eye contaminants

The locations most likely to have patients exposed today eye contaminants included most metropolitan areas in the study. These locations were New York City, Chicago, Los Angeles, and Miami, which were all found to have 17 to 21 percent of patients with dry eye syndrome as well as large amounts of air pollution. However, a solution to prevent this medical condition is as simple as using air filtration systems.

“Undoubtedly, many people living in arid and polluted cities would readily attest to the irritating effect air pollution has on dry eye,” said Anat Galor, M.D., Assistant Professor of Clinical Ophthalmology at Bascom Palmer Eye Institute. “Our research suggests that simple actions, such as maintaining the appropriate humidity indoors and using a high-quality air filter, should be considered as part of the overall management of patients suffering from dry eye syndrome.”

The research indicates it would be helpful for both primary care doctors and eye care professionals, such as optometrists and ophthalmologists to understand the relationship between dry eye contaminants and other environmental factors. In diagnosing the condition and suggesting the best treatment options, health care providers should inquire about the patients’ environmental history. Knowing the impact of dry eye contaminants on optical health, eye care facilities might consider utilizing air filtration systems to protect their patients from poor indoor air quality.

Hospital and medical facility news is brought to you by Air Impurities Removal Systems, Inc.

Remove Indoor Air Quality Occupational Risk For Plastics Industry Workers

Workers are exposed to a variety of fumes as part of heating and molding  processes in the plastics industry during plastics manufacturing.

As a versatile material, plastics is used to make packaging and containers, to ensure quality smartphone manufacturing and for a variety of other applications. There are over 1.1 million employees in the plastics industry, according to the Occupational Safety and Health Administration.

These workers commonly come into contact with chemical fumes that are emitted during raw material manufacturing and plastics processing. As plastics come in the form of granules, powders or pellets, there are certain ways to mold or shape these materials into products. For the plastics manufacturing process, the material has heat or pressure applied to the plastic or the plastic resins are combined with additives, including fillers and pigments, according to Health and Safety Executive.

Sources of Plastics Fumes

One of the main plastic-making processes employed by manufacturers is thermoplastic injection molding, which heats plastic pellets until they are melted so they can be shaped by a mold to form products. As workers perform these manufacturing procedures, they are at risk for being exposed to fumes from the plastics either from the machines used for manufacturing or the plastics materials themselves.

“The primary sources of emissions at plastic products manufacturing facilities are the pieces of equipment (e.g., extruder hopper, die head, sander) used to handle raw materials and produce the final product,” according to the Environmental Protection Agency. “These are typically the locations where chemical reactions occur, liquid solvents and solvent blends are exposed to the atmosphere, solid resin is heated and melted, and additives are introduced.”

The level of fume exposure during the process varies but it is usually dependent on the type of operating procedure and the material that is being produced. Workers may find themselves exposed to different kinds of fumes during plastics processing, including hydrogen chloride from PVC plastic and formaldehyde from acetals. When heat is applied to it, pure PVC breaks down to form hydrochloric acid gas. Fumes from plastics can irritate the lungs and are even thought to be cancer-causing.

Types of Emissions From Plastic Manufacturing

Employees can also come into contact with plastics fumes while handling thermoforming resins, which could generate volatile organic compounds (VOC) and hazardous air pollutant (HAP) emissions. These are byproducts of the chemical reactions of heating resins and are also emitted by additives, a secondary material in the process. In addition to VOCs and HAP emissions, particulate matter can also form while workers handle raw materials through grinding or cutting or other finishing procedures for plastic production.

To help control the presence of fumes, HSE recommends implementing local exhaust ventilation (LEV). This engineering control can include fume extraction equipment such as extractors, which can be effective in case plastic film sticks and overheats or other instances where heating processes can endanger workers. Aging machines can also pose a risk to workers if their processing controls are unpredictable.

OSHA also recommends adequate ventilation and fume extraction systems so workers do not inhale gases that could cause long term health effects.

Industrial and manufacturing news brought to you by Air Impurities Removal Systems, Inc.

For Healthy Indoor Air Quality, Food Manufacturers Need Clean Air

For Healthy Indoor Air Quality , Food Manufacturers Need Clean Air 1

Facing the constant risk of bacteria and regulatory pressures from federal agencies, food manufacturers must ensure their products are free from all sources of contamination, including the air. Maintaining safe and hygienic air quality levels not only provides employees with a comfortable work environment but also reduces the possibility of contaminants that are commonly found during food manufacturing.

Air should especially be controlled if it comes into direct contact with food. For example, common foods that are processed using air filtration systems include eggs. To prevent contamination of eggs by micro-organisms such as salmonella, eggs are sent through in-line conveyor belts, scrubbed with automated machinery, dried with filtered air and sanitized with chlorine misters.

Proper safety measures can help prevent the growth of microorganisms and the accumulation of particulates such as dust. Microorganisms that can harm food and, consequently, people are airborne and live within droplets, according to Food Safety Magazine. If the air is unfiltered, this could pose a challenge to facilities that wish to keep their structural features, such as overhead pipelines, clean and sanitized. As a best practice for food manufacturers, facilities should have filtration systems to safely remove airborne contaminants and improve the air quality of the building.

Sources for Contamination

When monitoring the air quality for food production factories, companies should note the physical volume of the facility as well as likely sources of food contamination and vulnerable areas in production lines. Sources of contamination could include raw materials used for production, packaging and movable equipment. Since machinery can generate exhaust, placing extractor arms near this equipment can effectively control potential air contamination. People can also bring particulates into the workplace as employees can track in dust and dirt on their feet or clothing. Dust can also cause micro-organism growth unless these particulates and various other contaminants are captured by air filtration systems.

Controls for Contamination

Temperature is an important factor for how food manufacturers can prevent airborne contamination, according to a report by Auburn University Department of Animal Sciences.

“The simplest, most straight-forward method of controlling processing room air conditions is to make sure that all HVAC units are in good working order and consistently maintaining temperature,” the Auburn University study said. “Additionally, doors to processing rooms should be kept closed at all times to reduce the chance of cross contamination and to assist the cooling units in maintaining temperature.”

Of course, proper air filtration goes hand-in-hand with temperature control. Food Safety News suggested the type of products within the facility that are being processed should determine the amount of filtration for incoming air. For example, products that are susceptible to contamination on a micro-level should utilize the highest standard filters.

It is also important to keep ventilation systems running as the risk of contamination grows as time passes.

“It has also been shown that as the day progresses, the amount of air contamination increases,” Auburn University researchers said. “In fact, as the week progresses, there is an increase in the overall contamination of air with bacteria and mold.”

Industrial and manufacturing news brought to you by Air Impurities Removal Systems, Inc.